If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x^2=105
We move all terms to the left:
2x^2+5x^2-(105)=0
We add all the numbers together, and all the variables
7x^2-105=0
a = 7; b = 0; c = -105;
Δ = b2-4ac
Δ = 02-4·7·(-105)
Δ = 2940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2940}=\sqrt{196*15}=\sqrt{196}*\sqrt{15}=14\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{15}}{2*7}=\frac{0-14\sqrt{15}}{14} =-\frac{14\sqrt{15}}{14} =-\sqrt{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{15}}{2*7}=\frac{0+14\sqrt{15}}{14} =\frac{14\sqrt{15}}{14} =\sqrt{15} $
| 6(2x-5)=6x+4 | | 2(x+3)+5x=3(2x+1) | | 15+3t=18-t | | 21-3x=2x-4 | | 12x+6=10x+18= | | 57=2(1+5n)-5(1+6n | | -6=-5p-p | | 7(2-x)+5-4(x-8)=-4-3(x+3) | | 20=1+6x+7 | | 187=11-x | | v-2-3=-8 | | 5y+2=2.5(10y+4) | | 13x+13x=7x+7x=180 | | 3(3x+2)=-5(4x-3) | | 11-7y+8y=5 | | 5(x+1)+6=26 | | 5x-4+2x=-3 | | 9mm=-3 | | 2(5x+1)=1/3(6x+12) | | x+0.6x=500 | | 2x-6=3x-20 | | 2=(1,18/29)*11+x | | (4x)^2+(3x)^2=100 | | -11w-w=-12 | | -11w−w=-12 | | 6+x/6=8 | | 11x+12x=1,18 | | X+20=3(x+6 | | -n(n-8)=-2 | | r+1+6r=-20 | | 2(1-3x)-3(x+2)=-5(x-4) | | 5(3x-1)=44 |